

Northern Beaches Secondary College

Manly Campus

2023 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Reading time – 10 minutes Working time – 3 hours Write using black pen

A reference sheet is provided

Mathematics Extension 2

	•
Instructions	•
	•
	•
	٠
	•

General

Total marks:Section I – 10 marks100• Attempt Questions 1 – 10

Allow about 15 minutes for this section

Calculators approved by NESA may be used

For questions in section II, show relevant mathematical reasoning

Section II – 90 marks

and/or calculations

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10.

- 1. Which of the following is a solution to the equation $|e^{i\theta} 1| = 2$?
 - A. $\theta = \pi$
 - B. $\theta = \frac{\pi}{2}$
 - C. $\theta = 0$
 - D. $\theta = -\frac{\pi}{2}$
- 2. What is the contrapositive of the following statement?

If you're sad and you know it, then you will stomp your feet.

- A. If you don't stomp your feet, then you're sad and you know it.
- B. If you stomp your feet, then you're either not sad or you don't know it.
- C. If you don't stomp your feet, then you're not sad and you don't know it.
- D. If you don't stomp your feet, then you're either not sad or you don't know it.
- 3. The point (-1, *a*) lies on the line with vector equation $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 4 \end{pmatrix}$, where $\mu \in \mathbb{R}$.

Which of the following is the correct value of a?

A.
$$-\frac{2}{3}$$
 B. $\frac{2}{3}$ C. $\frac{5}{4}$ D. 2

4. It is given that *a*, *b*, *c* and *d* are consecutive integers.

Which of the following statements may be false?

- A. *abcd* is divisible by 8
- B. *abcd* is divisible by 3
- C. a+b+c+d is divisible by 4
- D. a+b+c+d is divisible by 2
- 5. The polynomial P(z) has real coefficients, and P(2 i) = 0.

Which quadratic polynomial must be a factor of P(z)?

- A. $z^2 + 4z + 5$
- B. $z^2 4z + 5$
- C. $z^2 + 4z + 3$
- D. $z^2 4z + 3$
- 6. *P*, *Q*, *R* are three collinear points with position vectors $\mathbf{p}_{\widetilde{n}}$, $\mathbf{q}_{\widetilde{n}}$ and $\mathbf{r}_{\widetilde{n}}$ respectively.

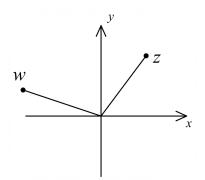
Q lies between P and R.

- If $\left| \overrightarrow{QR} \right| = \frac{1}{2} \left| \overrightarrow{PQ} \right|$, then **r** is equal to
- A. $\frac{3}{2} \mathbf{p} \frac{1}{2} \mathbf{q}$ B. $\frac{3}{2} \mathbf{q} - \frac{1}{2} \mathbf{p}$ C. $\frac{1}{2} \mathbf{p} - \frac{3}{2} \mathbf{q}$ D. $\frac{1}{2} \mathbf{p} - \frac{3}{2} \mathbf{q}$

7. A particle *P* is moving in simple harmonic motion. Its maximum speed is $6\pi ms^{-1}$ and its displacement at this time is 4 metres.

After 10 seconds it has reached its maximum speed again.

What is a possible equation for the displacement of *P*?


A.
$$x = 60\sin\left(\frac{\pi t}{10}\right) + 4$$

B.
$$x = 60\sin\left(\frac{\pi t}{20}\right) + 4$$

C.
$$x = 60\sin(10t) + 4$$

D.
$$x = 60\sin(20t) + 4$$

8. The Argand diagram shows the complex numbers *z* and *w*, where *z* lies in the first quadrant and *w* lies in the second quadrant.

Which complex number could lie in the third quadrant?

A.
$$-w$$

- B. 2*iz*
- C. \overline{z}
- D. w z

9. Consider the complex numbers $z_1 = 1 - i$ and $z_2 = 1 + \sqrt{3} i$.

What is the smallest positive value of *n* such that $\left(\frac{z_2}{z_1}\right)^n$ is purely imaginary?

- A. 2
- B. 4
- C. 6
- D. 8
- 10. Without evaluating the integrals, which one of the following integrals is greater than zero?

A.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x}{2 + \cos x} dx$$

B.
$$\int_{-\pi}^{\pi} x^{3} \sin x dx$$

C.
$$\int_{-1}^{1} (e^{-x^{2}} - 1) dx$$

D.
$$\int_{-2}^{2} \tan^{-1} (x^{3}) dx$$

Section II

90 marks

Attempt Questions 11 – 16

Allow about 2 hours and 45 minutes for this section.

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

For questions is Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new Writing Booklet.

- a) Write the negation of the statement *P*: "I am both rich and happy." 2
- b) Suppose $p \in \mathbb{R}$ satisfies $7^p = 2$. Prove that p is irrational.
- c) It is given that the point *R* is (2, 1, -1), $\overrightarrow{RS} = \begin{pmatrix} -4 \\ -1 \\ 2 \end{pmatrix}$ and $\overrightarrow{RT} = 3\overrightarrow{RS}$. Find the coordinates of *T*.

d) Simplify
$$\left(e^{-\frac{i\pi}{3}}\right)^2 \left(1 + i\sqrt{3}\right)^3$$
, writing your answer in the form $x + iy$ where $x, y \in \mathbb{R}$. 2

e) On an Argand diagram, sketch the region satisfied by both inequalities:

$$|z+1| \le |z-i|$$
 and $Im(z) < 2$ 3

f)

(i) Show that
$$\frac{1}{x(1+x^2)} = \frac{1}{x} - \frac{x}{1+x^2}$$
 1

(ii) Hence find
$$\int \frac{1}{x^2} \tan^{-1} x \, dx$$
 3

2

2

Question 12 (15 marks) Start a new Writing Booklet.

a) Calculate
$$\int_{1}^{3} x \sqrt{\frac{x-1}{2}} dx$$
 3

b) Using the substitution
$$x = 2 + 2\cos^2\theta$$
, calculate the value of $\int_2^3 \sqrt{\frac{x-2}{4-x}} dx$ 4

c)

(i) Find the square roots of
$$-3 - 4i$$
 2

(ii) Hence or otherwise, solve the equation
$$z^2 - 3z + (3 + i) = 0$$
 2

d) Consider the line
$$l = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$$
 and the points $A = (1, 2, 3)$ and $B = (0, 3, 8)$.

(i) Find the projection of the vector
$$\overrightarrow{AB}$$
 on the line *l*.

(ii) Hence or otherwise, find the shortest distance from point B to the line l. 2

2

Question 13 (15 marks) Start a new Writing Booklet.

a) Prove that the difference between the two-digit numbers "AB" and "BA" is always divisible by 9.

2

3

2

1

3

b) Using the substitution $t = \tan \frac{x}{2}$ or otherwise, evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{2}{\sin x + 1} dx$. Give your answer in the form $a + b\sqrt{3}$ where $a, b \in \mathbb{R}$ 3

c) The line l_1 has equation $\mathbf{r} = 2\mathbf{i} + 3\mathbf{k} + \lambda \left(\mathbf{i} - \mathbf{j} + 2\mathbf{k}\right)$ where λ is a parameter.

The line l_2 has the equation $\frac{x-2}{2} = \frac{y+1}{-1} = \frac{z-4}{3}$.

- (i) Find the point of intersection of l_1 and l_2
- (ii) To the nearest minute, find the acute angle between l_1 and l_2 .

d)

(i) Given that
$$a > 0$$
, $b > 0$, prove that $a + b \ge 2\sqrt{ab}$ 1

(ii) Hence show that
$$\sec^2 x \ge 2\tan x$$

(iii) Prove that $\sec^{2n} x + \csc^{2n} x \ge 2^{n+1}$ for all integers $n \ge 0$ and for all $x \in \left(0, \frac{\pi}{2}\right)$

Question 14 (15 marks) Start a new Writing Booklet.

a) Let ω be a complex fifth root of unity, that is, $\omega^5 = 1$ and $\omega \neq 1$.

(i) Show that
$$\omega^4 + \omega^3 + \omega^2 + \omega + 1 = 0$$
 1

(ii) Prove that one root of the equation
$$z^4 + 5z^2 + 5 = 0$$
 is $z = \omega - \omega^4$ **3**

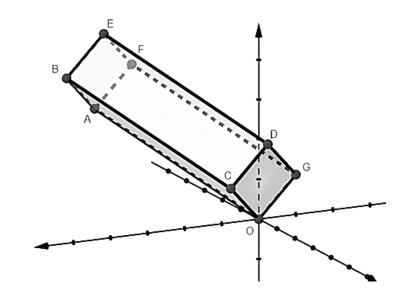
2

b) Find the Cartesian equation of the sphere with centre $\mathbf{c} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$ which passes through the point (1, -1, 2).

c) (i) Show that
$$\frac{d}{dx}(\sec 2x) = 2 \tan 2x \sec 2x$$
 2
(ii) Find $\int \tan^3 2x \sec 2x \, dx$ 2

d) Let α and β be conjugate complex numbers such that $|\alpha - \beta| = 4\sqrt{3}$ and $\frac{\alpha}{\beta^2}$ is real. (i) Show that α^3 is real (ii) Calculate $|\alpha|$ 3 Question 15 (15 marks) Start a new Writing Booklet.

a) A particle is moving horizontally at time *t* seconds such that $v^2 = x(6 - x)$, where *v* is the velocity in ms⁻¹ and *x* is the displacement in metres.


(i)	Prove that the particle is moving in simple harmonic motion.	2
(ii)	Find the centre and amplitude of the motion.	2
(iii)	Find the period of the motion.	1
(iv)	Find the maximum speed.	1
(v)	At $t = 0$, $v = 3$ and $x = 3$. Find the displacement x as a function of time t.	3

- b) The polynomial $P(z) = z^4 10z^3 + cz^2 + dz + 169$ has two zeroes $\alpha = a + ib$ and $\beta = b + ia$, where $a, b, c, d \in \mathbb{R}$ and $a \neq b$.
 - (i) Express the other two zeroes of P(z) in terms of a and b, justifying your answer. 1
 - (ii) Find the values of *a* and *b*, given that they are both integers. 2

c) Use mathematical induction to show that
$$\left(2-\frac{1}{n}\right)^n > n$$
 for all integers $n \ge 2$ 3

Question 16 (15 marks) Start a new Writing Booklet.

a) The diagram shows a rectangular prism.

Let
$$\overrightarrow{OA} = 3\mathbf{i} - 12\mathbf{j} + 3\mathbf{k}$$
, $\overrightarrow{OC} = 2\mathbf{i} + \mathbf{j} + a\mathbf{k}$, and $\overrightarrow{OG} = -2\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

- (i) Show that a = 2 1
- (ii) Hence or otherwise, show that y = 0 and z = 2. 3

2

3

(iii) Calculate how high point E is above the *x*-*y* plane.

b) Find
$$\int \frac{x^2 - 7x + 4}{(x+1)(x-1)^2} dx$$
 4

c) (i) Let
$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
 and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$.

By considering $\mathbf{a} \cdot \mathbf{b}$, show that:

$$\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right) \geq \left(a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}\right)^{2}$$
²

(ii) Given that x, y and z are non-negative and that x + y + z = 3, find the minimum possible value of $x^2 + 4y^2 + z^2$.

End of paper

0	2023 Year 12 Mathematics Extension 2 Trial solution	
<u>Q</u>	Solution	Mark allocation
1	$ \cos heta + i \sin heta - 1 = 2$	A
	$\sqrt{\left(\cos heta-1 ight)^2+sin^2 heta}=2$	29 (of 38) students
	$\sqrt{2-2\cos heta}=2$	answered correctly
	$2-2\cos heta=4$	
	$\cos heta=-1$	
	$\therefore heta = \pi$	
2	Statement is of the form $A\cap B\Rightarrow C$	D
	Contrapositive of this statement is: $\overrightarrow{C} \Rightarrow \overrightarrow{A} \bigcup \overrightarrow{B}$	36 students answered correctly
3	$x=2-3\mu \; , \;\; y=-2+4\mu$	D
	When forming a Cartesian equation, we have	
		38 students answered
	$y=-2+4iggl(rac{2-x}{3}iggr)$	correctly! 🏂
	When $x=-1$, $y=2$	
	Therefore $a = 2$	
4	Option C: A counter-example is 1+2+3+4=10 which is not divisible by	С
	 4. Option A: In four consecutive integers, one integer is divisible by 2 while another integer is divisible by 4. So the product is divisible by 8. Option B: In four consecutive integers, one of them is divisible by 3. So the product is divisible by 3. Option D: In four consecutive integers, 2 of them are even, and two of them are odd, so the sum is even. 	31 students answered correctly
5	By the conjugate root theorem, both $2 + i$ and $2 - i$ are factors, $\therefore [z - (2 + i)][z - (2 - i)]$	В
	= (z-2-i)(z-2+i)	35 students answered
	$= (z-2)^2 - i^2$	correctly
	$= z^2 - 4z + 4 + 1$	
	$= z^2 - 4z + 5$ is a factor	
6	$= z^{2} - 4z + 5 \text{ is a factor}$ $\mathbf{r} = \overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{PQ} + \overrightarrow{QR}$	В
	$\sim = \overrightarrow{OP} + \overrightarrow{PQ} + \frac{1}{2}\overrightarrow{PQ}$	
	$-OP + PQ + \frac{1}{2}PQ$	31 students answered
	$= \overrightarrow{OP} + \frac{3}{2} \overrightarrow{PQ}$	correctly
	2	
	$=\mathbf{p} + \frac{3}{2} \left(\mathbf{q} - \mathbf{p}\right)$	
	$=\frac{3}{2}\mathbf{q} - \frac{1}{2}\mathbf{p}$	
7	$= \frac{3}{2} \mathbf{q} - \frac{1}{2} \mathbf{p}$ $x = A \sin(nt) + k$	A
	$\dot{x} = An\cos(nt)$	
		34 students answered
		correctly
	Maximum speed = An since $-1 \le \cos(nt) \le 1$	
	$An = 6\pi$	

	$\frac{20\pi}{n} = 20 \implies n = \frac{\pi}{10}$ $\times \frac{\pi}{10} = 6\pi$	
	$\times \frac{\pi}{10} = 6\pi$	
	A = 60	
	$t = 0, x = 4 \implies k = 4$	
	$= 60\sin\left(\frac{\pi t}{10}\right) + 4$	
-	on A: -w lies in the 4 th quadrant (rotation of w by 180 degrees	D
abou	it the origin)	35 students answered
-	on B: $2iz$ lies in the 2^{nd} quadrants (rotation of z by 90 degrees and ble the modulus)	correctly
Optie	on C: \overline{z} lies in the 4 th quadrant (reflection of z about x-axis)	
quad	on D: Adding the vectors <i>w</i> and <i>-z</i> could take us to the 3 rd lrant, depending on the lengths of these vectors	
9 (z_2)	$\int_{0}^{n} = \left(\frac{1+\sqrt{3} \ i}{1-i}\right)^{n} = \left(\frac{2e^{\frac{i\pi}{3}}}{\sqrt{2} \ e^{-\frac{i\pi}{4}}}\right)^{n} = \left(\sqrt{2} \ e^{\frac{7\pi i}{12}}\right)^{n} = \left(\sqrt{2}\right)^{n} \ e^{\frac{7\pi ni}{12}}$	С
$\left(\overline{z_1}\right)$	$ = \left(\frac{1}{1-i} \right)^{-1} = \left[\frac{1}{\sqrt{2}e^{-\frac{i\pi}{4}}} \right]^{-1} = \left(\sqrt{2}e^{-\frac{i\pi}{4}} \right)^{-1} = \left(\sqrt{2}e^{-\frac{i\pi}{4}} \right)^{-1}$	36 students answered
For t	this to be purely imaginary, we require the argument to be a	correctly
mult	iple of $\frac{\pi}{2}$ Hence the smallest positive value of <i>n</i> is 6.	
10 Optio	on A: $f(-x) = \frac{-x}{2 + \cos(-x)} = -\frac{x}{2 + \cos x} = f(x)$	В
	$\int_{a}^{a} cost$	19 students answered
Henc	ce the function is odd, and the integral $\int_{-a} s = 0$.	correctly
Optie	on D: same reasoning as A	
-	on C: the graph of $y = f(x)$ is below the <i>x</i> -axis for all real <i>x</i> , so the gral is less than 0.	
Optio	on B: $x^3 \sin x$ is non-negative for $[-\pi, \pi]$, hence the integral is tive.	
11a Nega	ation: "I am not rich <i>or</i> I am not happy."	2 Marks: Correct answer
		1 Mark:
		"I am not rich and I am not happy"
		OR One of the statements:
		"I am not rich", "I am
		not happy"
		23 students got full marks

11b	Assume that there is a rational number $p = \frac{a}{b}$, where $a, b \in \mathbb{Z}$ such	2 Marks: Correct answer.
	that $7^p = 2$	1 Mark: Obtains the
	That is: $7^{a/b} = 2$ $\Rightarrow 7^a = 2^b$	expression $7^{a/b} = 2$.
	For integral a, b , the left side of this equation is odd whilst the right side is even.	21 students got full
	This is a contradiction; hence p must be irrational.	marks
11c	$\overrightarrow{OT} = \overrightarrow{OR} + \overrightarrow{RT}$	2 Marks: Correct answer.
	$=\overline{OR}+3\overline{RS}$	allswel.
	$= \begin{pmatrix} 2\\1\\-1 \end{pmatrix} + 3 \begin{pmatrix} -4\\-1\\2 \end{pmatrix}$	1 Mark: Attempts to write a vector
	$ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} +3 \\ 2 \end{bmatrix} $	equation to find \overrightarrow{OT}
	(-10)	
	$= \begin{pmatrix} -10\\ -2\\ 5 \end{pmatrix}$	31 students got full marks
11.1		
11d	$\left(e^{-i\pi/3}\right)^{2}\left(1+i\sqrt{3}\right)^{3}=e^{-i2\pi/3}\times\left(2e^{i\pi/3}\right)^{3}$	2 Marks: Correct answer.
	$=e^{-i2\pi/3}\times 8e^{i\pi}$	1 Mark: Converts
	$=8e^{i\pi/3}$	$1+i\sqrt{3}$ to exponential
	$=8\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)$	form or converts both terms to <i>cis</i> form.
	$\begin{pmatrix} 2 & 2 \end{pmatrix} = 4 + 4\sqrt{3}i$	23 students got full
	$=4+4\sqrt{3l}$	marks
11e	Let $z = x + iy$	3 marks: Correct
	$\left x+1+iy\right \le \left x+i\left(y-1\right)\right $	answer.
	$(x+1)^{2} + y^{2} \le x^{2} + (y-1)^{2}$	2 Marks: Correct
	$y \leq -x$	sketch of each region but does not show
	Im(z) 3 \uparrow	correct intersection.
		1 Mark: Correct sketch
	Re(z)	of one region, OR
		Correct algebraic
	-2 -3	representation of one of $ z + 1 $ or $ z - i $.
	-4	
		12 students got full marks

11fi	$1 1 + r^{-1} r^{-1}$	1 Marks Compat
	$\frac{1}{x} - \frac{x}{1+x^2} = \frac{(1+x^2) - x^2}{x(1+x^2)}$	1 Mark: Correct answer.
		answer.
	$=\frac{1+x^2-x^2}{x(1+x^2)}$	
	=	
	$x(1+x^2)$	
11fii	$= \frac{1}{x(1+x^2)}$ Let $u = \tan^{-1}x \Rightarrow du = \frac{1}{1+x^2}$	3 Marks: Correct
		answer.
	$v' = \frac{1}{r^2} \Rightarrow v = -\frac{1}{x}$	
	x^2 x	2 Marks: Correct use of IBP to obtain the
		expression in line ©
	$\therefore \int \frac{1}{r^2} \tan^{-1} x dx$	
		1 Mark: Obtains
	$= -\frac{1}{x} \tan^{-1} x - \int -\frac{1}{x} \times \frac{1}{1+x^2} dx$	correct expressions for
		du and v .
	$= -\frac{1}{x} \tan^{-1} x + \int \frac{1}{x(1+x^2)} dx$	
	$= -\frac{1}{x} \tan^{-1} x + \int \left \frac{1}{x} - \frac{x}{1 + x^2} \right dx$	
		30 students got full
	$= -\frac{1}{r} \tan^{-1} x + \int \frac{1}{r} dx - \frac{1}{2} \int \frac{2x}{1+r^2} dx$	marks for Q11f
	$= -\frac{1}{x} \tan^{-1} x + \ln x - \frac{1}{2} \ln(1 + x^2) + C$	
12a	Let $u^2 = \frac{x-1}{2} \Rightarrow x = 1 + 2u^2$	3 Marks: Correct
	Let $u = \frac{1}{2} \implies x = 1 + 2u$	answer.
	Then $dx = 4udu$ and $x = 1 \Rightarrow u = 0, x = 3 \Rightarrow u = 1$	
	$\int_{0}^{3} \sqrt{x-1} = \int_{0}^{1} (x-2) = x^{2}$	2 Marks: Makes a suitable substitution
	$\int_{1}^{3} x \sqrt{\frac{x-1}{2}} dx = \int_{0}^{1} (1+2u^{2}) u \times 4u du$	and correctly
		transforms the
	$=4\int (u^2+2u^4)du$	integrand.
	$\begin{bmatrix} u^3 & 2u^5 \end{bmatrix}^1$	
	$=4\left[\frac{1}{3}+\frac{1}{5}\right]$	
	$=4\left(\frac{1}{3}+\frac{2}{5}-0\right)$	transforms ax.
	$=\frac{1}{15}$	U
	1.5	marks.
		Most students made a
		suitable substitution.
		The most common
		mistakes were
		algebraic.
101		
12b	$x = 2 + 2\cos^2\theta \Longrightarrow dx = -4\cos\theta\sin\theta d\theta$	4 Marks: Correct
12b		4 Marks: Correct answer.
12b	$x = 2 \Longrightarrow \theta = \frac{\pi}{2}$	answer.
12b		
	$= 4 \int_{0}^{1} (u^{2} + 2u^{4}) du$ = $4 \left[\frac{u^{3}}{3} + \frac{2u^{5}}{5} \right]_{0}^{1}$ = $4 \left(\frac{1}{3} + \frac{2}{5} - 0 \right)$ = $\frac{44}{15}$	1 Mark: Identifies a suitable substitution and correctly transforms dx.24 students got full marks.Most students made a suitable substitution. The most common mistakes were algebraic.

	$\int_{2}^{3} \sqrt{\frac{x-2}{4-x}} dx = \int_{\pi/2}^{\pi/4} \sqrt{\frac{2\cos^2\theta}{2-2\cos^2\theta}} \left(-4\cos\theta\sin\theta\right) d\theta$	equivalent expression in terms of $\cos^2 \theta$
	$= \int_{\pi/4}^{\pi/2} \sqrt{\frac{\cos^2 \theta}{\sin^2 \theta}} 4 \cos \theta \sin \theta d\theta$	2 Marks: Correctly transforms differential and limits.
	$=4\int_{\pi/4}^{\pi/2} \frac{\cos\theta}{\sin\theta} \cos\theta \sin\theta d\theta$ $=4\int_{\pi/4}^{\pi/2} \cos^2\theta d\theta$	1 Mark: Correctly transforms integrand or limits or differential.
	$= \int_{\pi/4}^{\pi/2} (2\cos 2\theta + 2) d\theta$ $= [\sin 2\theta + 2\theta]_{\pi/4}^{\pi/2}$	12 students got full marks.
	$= \left[\sin 2\theta + 2\theta \right]_{\pi/4}$ $= \sin \pi + \pi - \left(\sin \frac{\pi}{2} + \frac{\pi}{2} \right)$ $= \frac{\pi}{2} - 1$	The most common mistakes were algebraic (trig identities, trig exact values, minus signs, coefficients).
12ci	Solve for x and y, where $x, y \in \mathbb{R}$, such that $(x + iy)^2 = -3 - 4i$	2 Marks: Correct answer.
	$x^{2} - y^{2} + 2xyi = -3 - 4i$ Equating real and imaginary parts gives $x^{2} - y^{2} = -3 \text{ and } xy = -2$	1 Mark: Forms correct expressions for $x^2 - y^2$ and xy
	Solving the equations simultaneously, $x^{2} - \left(\frac{-2}{x}\right)^{2} = -3$ $x^{4} + 3x^{2} - 4 = 0$ $(x^{2} + 4)(x^{2} - 1) = 0$	
	Since $x \in \mathbb{R}$, $x^2 = 1$. $\therefore x = \pm 1$, $y = \mp 2$ The square roots are $1 - 2i$ and $-1 + 2i$	
12cii	$z = \frac{3\pm\sqrt{9-4(3+i)}}{2} = \frac{3\pm\sqrt{-3-4i}}{2}$ Using part (i), the required solutions are	2 Marks: Correct answer {consistent with results from part (i)}
	$z = \frac{3+1-2i}{2}, \frac{3-1+2i}{2}$:: $z = 2 - i, 1 + i$	1 Mark: Correct substitution into quadratic formula.
		22 students got full marks for Q12c. Mostly done well. This is a stock-standard procedure in Ext 2.
12di	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 0 - 1\\ 3 - 2\\ 8 - 3 \end{pmatrix} = \begin{pmatrix} -1\\ 1\\ 5 \end{pmatrix}$	2 Marks: Correct answer.

	$\therefore proj_{l}\overrightarrow{AB} = proj_{\underline{b}}\overrightarrow{AB}, \text{ where } \underline{b} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \text{ is the direction vector of the line.}$	1 Mark: Finds the vector \overrightarrow{AB}
	$\therefore proj_{l}\overrightarrow{AB} = \frac{\overrightarrow{AB} \cdot \underline{b}}{\underline{b} \cdot \underline{b}} \underline{b} = \frac{-1 - 1 + 20}{1 + 1 + 16} \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$	Note that "l" is a line, not a vector. Two vectors are required in order to use the projection formula. A diagram may be helpful before you begin.
		A surprising number of students didn't write the projection formula correctly (from Ext 1).
12dii	$\perp proj_{l}\overrightarrow{AB} = \overrightarrow{AB} - proj_{l}\overrightarrow{AB} = \begin{pmatrix} -1\\1\\5 \end{pmatrix} - \begin{pmatrix} 1\\-1\\4 \end{pmatrix} = \begin{pmatrix} -2\\2\\1 \end{pmatrix}$	2 Marks: Correct answer.
	$\therefore \text{ shortest distance} = \left \perp \operatorname{proj}_{l} \overrightarrow{AB} \right = \sqrt{(-2)^{2} + 2^{2} + 1^{2}} = 3$	1 Mark: Finds the perpendicular vector.
		8 students got full marks for Q12d.
13a	We can write " AB " = 10 A + B And " BA " = 10 B + A	2 Marks: Correct answer
	$\therefore "AB" - "BA" = 10A + B - (10A + B)$ = 10A + B - 10B - A = 9A - 9B = 9(A - B)	1 Mark: Correct expanded expression for either " <i>AB</i> " or " <i>BA</i> "
		32 students got full marks
13b	Let $t = \tan \frac{x}{2} \implies dt = \frac{1}{2} \sec^2 \frac{x}{2} dx = \frac{1}{2} (1 + t^2) dx \implies dx = \frac{2}{1 + t^2} dt$	3 Marks: Correct answer.
	When $x = \frac{\pi}{3}, t = \frac{1}{\sqrt{3}}$ $x = \frac{\pi}{2}, t = 1$ $\therefore I = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{2}{\sin x + 1} dx = \int_{\frac{1}{\sqrt{2}}}^{1} \frac{2}{\frac{2t}{1 + t^2} + 1} \times \frac{2}{1 + t^2} dt = \int_{\frac{1}{\sqrt{2}}}^{1} \frac{4}{2t + 1 + t^2} dt$	2 Marks: Correct substitution of <i>t</i> formula, including correct transformations of integrand, differential and limits.
	$\frac{\frac{\pi}{3}}{\frac{1}{\sqrt{3}}} = \frac{1}{\sqrt{3}} \frac{1}{1+t^2} + 1 = 1 + t = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} = 1 + t = 1$ $I = \int_{\frac{1}{\sqrt{3}}}^{1} \frac{4}{(t+1)^2} dt = \left[-\frac{4}{t+1} \right]_{\frac{1}{\sqrt{3}}}^{1} = -\frac{4}{1+1} - \left(-\frac{4}{\frac{1}{\sqrt{3}}+1} \right)$ $I = -2 + \frac{4\sqrt{3}}{1+\sqrt{3}} = -2 + \frac{4\sqrt{3}(1-\sqrt{3})}{1-3} = -2 - 2\sqrt{3}(1-\sqrt{3})$	1 Mark: Correct substitution of <i>t</i> formula but incorrect/incomplete transformation of integrand, differential or limits.
	$\therefore I = 4 - 2\sqrt{3}$	

		19 students got full marks
13ci	$\mathbf{r} = 2\mathbf{i} + 3\mathbf{k} + \lambda \left(\mathbf{i} - \mathbf{j} + 2\mathbf{k}\right)$	3 Marks: Correct
	$= 2\mathbf{i} + \lambda\mathbf{j} - \lambda\mathbf{j} + 2\lambda\mathbf{k} + 3\mathbf{k}$	answer
	$= (2+\lambda)\mathbf{i} - \lambda \mathbf{j} + (2\lambda+3)\mathbf{k}$	2 Marks: Finds correct
		equations for l_1 and l_2
	$l_1: \mathbf{r} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\2 \end{pmatrix}$	1 Mark: Finds correct equation for l_1 OR l_2 .
	$\frac{x-2}{2} = \frac{y+1}{-1} = \frac{z-4}{3} = \mu$	
	$\frac{x-2}{2} = \mu \implies x = 2 + 2\mu$ $v + 1$	
	$\frac{y+1}{-1} = \mu \implies y = -1 - \mu$ $\frac{z-4}{-3} = \mu \implies z = 4 + 3\mu$	
	$\frac{3}{l_2} : \begin{pmatrix} 2\\-1\\4 \end{pmatrix} + \begin{pmatrix} 2\\-1\\3 \end{pmatrix} \mu$	
	$\therefore \begin{pmatrix} 2\\0\\3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\2 \end{pmatrix} = \begin{pmatrix} 2\\-1\\4 \end{pmatrix} + \begin{pmatrix} 2\\-1\\3 \end{pmatrix} \mu$	
	$\Rightarrow \qquad -\lambda = -1 - \mu \\ \lambda = 1 + \mu$	
	$2 + \lambda = 2 + 2\mu 2 + 1 + \mu = 2 + 2\mu \mu = 1 \lambda = 2$	
	$3 + 2\lambda = 3 + 2 \times 2 = 7$ $4 + 3\mu = 4 + 3 \times 1 = 7$	
	$\therefore \text{the lines intersect at} \begin{pmatrix} 2\\0\\3 \end{pmatrix} + 2 \begin{pmatrix} 1\\-1\\2 \end{pmatrix} = \begin{pmatrix} 3\\-2\\7 \end{pmatrix}$	

13cii	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$	2 Marks: Correct
	$\cos\theta = \frac{\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}}{\sqrt{2^2 + (-1)^2 + 3^2} \sqrt{1^2 + (-1)^2 + 2^2}}$	answer.
	$\cos\theta = \frac{\left(3\right)\left(2\right)}{\sqrt{2^2 - \left(2^2\right)^2 - 2^2}}$	1 Mark: Finds a value for θ consistent with an
		incorrect value of $\cos\theta$.
	$=\frac{2+1+6}{\sqrt{14}\sqrt{6}}$	
	$=\frac{9}{\sqrt{84}}$	4 students got full marks for Q13c
	$\therefore \theta = 10^{\circ}53^{\circ}36.22^{\circ} \approx 10^{\circ}54^{\circ}$ to nearest minute	
13di	$\left(\sqrt{a} - \sqrt{b}\right)^2 \ge 0$	1 Mark: Correct answer.
	$a - 2\sqrt{ab} + b \ge 0$	unswei.
	$a+b \ge 2\sqrt{ab}$	
13dii	$\sec^2 x = \tan^2 x + 1 \ge 2\sqrt{\tan^2 x \times 1} = 2\tan x$	1 Mark: Correct
13diii	Similar to (ii), $\csc^2 x = \cot^2 x + 1 \ge 2 \cot x$	answer. 3 Marks: Correct
		answer.
	Note that for $x \in \left(0, \frac{\pi}{2}\right)$, $\tan x > 0$ and $\cot x > 0$	2 Marks: Forms
	Then $\sec^{2n} x = (\sec^2 x)^n \ge (2\tan x)^n = 2^n \tan^n x$	expressions for $\sec^{2n}x$ and $\csc^{2n}x$ in terms of
	and $\csc^{2n} x = (\csc^2 x)^n \ge (2 \cot x)^n = 2^n \cot^n x$	$\tan x$ and $\cot x$.
	So $\sec^{2n} x + \csc^{2n} x \ge 2^n \tan^n x + 2^n \cot^n x$	1 Mark: Establishes
	$=2^n\left(\tan^n x + \cot^n x\right)$	$\csc^2 x \ge 2\cot x.$
	$\geq 2^n \left(2 \sqrt{\tan^n x \times \cot^n x} \right)$ using part (a)	
	$=2^{n+1} \qquad \text{since } \cot x = \frac{1}{\tan x}$	5 students got full marks for Q13d
14ai	$\omega^5 - 1 = 0$	1 Mark: Correct
	$(\omega-1)(\omega^4+\omega^3+\omega^2+\omega+1)=0$	answer.
	Since $\omega \neq 1$, $\omega^4 + \omega^3 + \omega^2 + \omega + 1 = 0$	<i>This is a stock- standard proof in Ext 2.</i>
	OR	
	The roots of $\omega^5 - 1 = 0$ are 1, ω , ω^2 , ω^3 , ω^4 .	
	Consider the sum of the roots:	
	$1 + \omega + \omega^{2} + \omega^{3} + \omega^{4} = -\frac{b}{a} = -\frac{0}{1} = 0$	

14aii	If $z = \omega - \omega^4$	3 Marks: Correct
	$z^2 = \left(\omega - \omega^4\right)^2$	answer.
	$=\omega^2-2\omega^5+\omega^8$	2 Marks: Correct
	$=\omega^2 - 2 + \omega^3$, since $\omega^5 = 1$	simplified expressions for z^2 and z^4 .
	$z^4 = \left(\omega - \omega^4\right)^4$	
	$= \omega^{4} - 4\omega^{3} (\omega^{4})^{1} + 6\omega^{2} (\omega^{4})^{2} - 4\omega (\omega^{4})^{3} + (\omega^{4})^{4}$	1 Mark: Correct unsimplified expressions for z^2 and
	$= \omega^4 - 4\omega^7 + 6\omega^{10} - 4\omega^{13} + \omega^{16}$	z^4
	$=\omega^4 - 4\omega^2 + 6 - 4\omega^3 + \omega$, since $\omega^5 = 1$	OR Correct simplified
	Hence $z^4 + 5z^2 + 5 = \omega^4 - 4\omega^2 + 6 - 4\omega^3 + \omega + 5(\omega^2 - 2 + \omega^3) + 5$	expression for z^2 or z^4 .
	$=\omega^4 + \omega^3 + \omega^2 + \omega + 1$	
	=0, using (i)	Students who wrote
	So $z = \omega - \omega^4$ is a solution of $z^4 + 5z^2 + 5 = 0$	out P(w-w ⁴) and
		expanded were able to gain at least 1 mark.
		12 students got full
14b	$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2$	marks for Q14a2 Marks: Correct
		answer.
	$ \begin{pmatrix} x_0 \\ y_0 \\ z_1 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} $	1 Mark: Obtains
	$\binom{z_0}{r^2} = (1-2)^2 + (-1-3)^2 + (2-4)^2 = 9$	correct LHS or RHS of equation of sphere.
	$\therefore (x-2) + (y+3) + (z-4)^2 = 9$	
		28 students answered correctly. Most
		common mistake was
		not writing in Cartesian form.
14ci	$\frac{d}{dx}(\sec 2x) = \frac{d}{dx}(\cos 2x)^{-1}$	2 Marks: Correct
	$\frac{dx}{dx} = -1(\cos 2x)^{-2} \times -2\sin 2x$	answer.
		1 mark: Attempts to
	$=\frac{2\sin 2x}{(\cos 2x)^2}$	use the chain rule to differentiate (cos $2x$) ⁻²
	$= 2 \times \frac{\sin 2x}{\cos 2x} \times \frac{1}{\cos 2x}$	differentiate $(\cos 2x)^{-2}$
	$\cos 2x \cos 2x \\ = 2 \tan 2x \sec 2x$	Note: beware of 1 or 2- mark "prove"
		questions. Since the
		<i>last line is given, you</i> <i>must take care to show</i>
		all steps of working.

14cii	$I = \int \tan^3 2x \sec 2x dx$	2 Marks: Correct answer
	$= \int \tan 2x(\tan^2 2x) \sec 2x dx$ = $\int \tan 2x (\sec^2 2x - 1) \sec 2x dx$ = $\frac{1}{2} \int (\sec^2 2x - 1) 2 \tan 2x \sec 2x dx$	1 Mark: Correct progress to third line of working, i.e. splits tan ³ 2x into tan2x*(sec ² 2x-1)
	$= \frac{1}{2} \int \sec^2 2x \ (2 \tan 2x \ \sec 2x) dx - \frac{1}{2} \int 2\tan 2x \ \sec 2x \ dx$ $= \frac{1}{2} \left(\frac{1}{3} \sec^3 2x \right) - \frac{1}{2} \sec 2x \ dx$ $= \frac{1}{6} \sec^3 2x - \frac{1}{2} \sec 2x + C$	Most students overcomplicated things with integration by parts, or did not see how to apply (i).
		2 students got full marks for Q14c.
14di	Since $\beta = \overline{\alpha}$, and $\alpha \overline{\alpha} = \alpha ^2$	2 Marks: Correct answer.
	$\alpha^{3} = \frac{\alpha}{\beta^{2}} \times (\alpha\beta)^{2} = \frac{\alpha}{\beta^{2}} \times (\alpha\overline{\alpha})^{2} = \frac{\alpha}{\beta^{2}} \times \alpha ^{4}$ Then α^{3} is real since $\frac{\alpha}{\beta^{2}}$ and $ \alpha $ are real	1 Mark: Transforms α^3 to $\alpha/\beta^{2\times} (\alpha\beta)^2$.
	$\frac{\mathbf{Alternative method:}}{\alpha = r \operatorname{cis} \theta}$	This part challenged most students. The easiest method involves the use of conjugate properties.
	$\beta = \overline{\alpha} = r \operatorname{cis}(-\theta)$	
	$\frac{\alpha}{\beta^2} = \frac{r \operatorname{cis} \theta}{(r \operatorname{cis}(-\theta))^2}$ $= \frac{r \operatorname{cis} \theta}{r^2 \operatorname{cis}(-2\theta)}$	
	$= \frac{1}{r} \operatorname{cis}(3\theta) \in \mathbb{R}$ $\therefore \text{ cis } 3\theta \in \mathbb{R}$	
14dii	$\therefore \alpha^3 = r^3 \text{ cis } 3\theta \in \mathbb{R}$ Let $\alpha = x + iy$ where $x, y \in \mathbb{R} \Rightarrow \beta = x - iy$ $ \alpha - \beta = 2iy = 2y = 4\sqrt{3} \therefore y = 2\sqrt{3}$	3 Marks: Correct answer.
	$\alpha^{3} = x^{3} - 3xy^{2} + y(3x^{2} - y^{2})i$ $\alpha^{3} \text{ is real, hence } y(3x^{2} - y^{2}) = 0$	2 Marks: Finds y=Im(α) and forms an expression for α^3 in terms of x and y.
	Since $y = 2\sqrt{3}$, $3x^2 - y^2 = 0 \Rightarrow 3x^2 = 12$ $\therefore x^2 = 4$	1 Mark: Obtains $y = 2\sqrt{3}$.
	$\Rightarrow \alpha = \sqrt{x^2 + y^2} = \sqrt{4 + 12} = 4$	

		4 students got full marks for Q14d
15ai	$v^{2} = x(6 - x) = 6x - x^{2}$ $\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = \frac{d}{dx}\left(3x - \frac{1}{2}x^{2}\right) = 3 - x$	2 Marks: Correct answer
	$\begin{array}{l} dx(2) & dx(2) \\ \therefore & \ddot{x} = -1(x-3) \\ \ddot{x} \text{ is of the form } -n^2(x-c) \text{ with } n = 1 \\ \therefore SHM \end{array}$	1 Mark: Obtains a correct derivative
15aii	From $\ddot{x} = -(x-3)$, the centre is $x = 3$ v = 0 at amplitude position $x(6-x) = 0 \Rightarrow x = 0, 6$ \therefore amplitude = 3 - 0 or 6 - 3 = 3	2 Marks: Correct values for both centre and amplitude
		1 Mark: One correct value
15aiii	Period: $T = \frac{2\pi}{n} = \frac{2\pi}{1} = 2\pi$	1 Mark: Correct answer
15aiv	Maximum speed occurs at centre, $x = 3$	1 Mark: Correct answer
15av	$v^{2} = 3(6-3) = 9 \Rightarrow v _{max} = 3 ms^{-1}$ t = 0, x = 3, v = 3 Starts at centre of motion $\Rightarrow x = A\sin(nt + \alpha) + c$	3 Marks: Correct answer
	n = 1, c = 3, A = 3 $\therefore \qquad x = 3\sin(t + \alpha) + 3$ $t = 0, x = 3 \implies 3\sin\alpha + 3 = 3$	2 Marks: Finds the correct value for α .
	$sin\alpha = 0$ $\alpha = 0$ $\therefore \qquad x = 3sint + 3$	1 Mark: Attempts to use a correct trigonometric expression for <i>x</i> .
	OR $x = A\cos(nt + \alpha) + c$ $A = 3, n = 1, c = 3$ $x = 3\cos(t + \alpha) + 3$ $t = 0, x = 3 \implies 3 = 3\cos\alpha + 3$ $\Rightarrow \cos\alpha = 0$	
	$ \Rightarrow \cos \alpha = 0 \alpha = \frac{\pi}{2} \therefore \qquad x = 3 \cos \left(t + \frac{\pi}{2} \right) + 3 OR $	OR
		3 Marks: Correct answer
		2 Marks: Forms a correct integral expression involving $9-(x-3)^2$
		1 Mark: Identifies $v = +\sqrt{6x - x^2}$

-		
	$v^2 = 6x - x^2$	
	$v = \pm \sqrt{6x - x^2}$	
	$x = 3, v = 3 \implies v = +\sqrt{6x - x^2}$	14 students got full
	$\frac{dx}{dt} = \sqrt{6x - x^2}$	marks for Q15a
		~
	$\frac{dx}{\sqrt{6x-x^2}} = dt$	
	$\sqrt{6x-x^2}$	
	$\int \frac{\sqrt{9 - x}}{\sqrt{9 - (x - 3)^2}} dx = \int dt$	
	$\sin^{-1}\left(\frac{x-3}{3}\right) = t+C$	
	$t=0, x=3 \Rightarrow C=\sin^{-1}0=0$	
	-1(x-3)	
	\therefore $t = \sin\left(\frac{\pi}{3}\right)$	
	$\therefore \qquad x = 3\sin t + 3$	
15bi	$\frac{\therefore}{P(z) = z^4 - 10z^3 + cz^2 + dz + 169}$	1 Mark: Correct
	Coefficients of $P(z)$ are real	answer
	∴ complex zeroes occur in conjugate pairs	
1 51 **	\therefore other two zeroes are $\overline{\alpha} = a - ib$ and $\overline{\beta} = b - ia$	
15bii	Sum of zeroes = $-\left(-\frac{10}{1}\right) = 10$	2 Marks: Correct answer
	a + ib + a - ib + b + ia + b - ia = 10	1 Mark: Finds the sum
	2a + 2b = 10 $a + b = 5$ (1)	or product of the zeros
	u + v - s (1)	
	170	
	Product of zeroes $=\frac{169}{1}=169$	17 students got full
	$\left(\sqrt{-1}\right)\left(\sqrt{00}\right) = 100$	marks for Q15b
	$ \alpha ^2 \beta ^2 = 169$	
	$\frac{ \alpha \beta }{\sqrt{a^2 + b^2}} \frac{ \alpha \beta }{\sqrt{b^2 + a^2}} = 13$	
	$\sqrt{a^2 + b^2}\sqrt{b^2 + a^2} = 13$ $a^2 + b^2 = 13$	
	a + b - 15	
	$b = 5 - a \Rightarrow a^2 + (5 - a)^2 = 13$	
	$a^{2} + 25 - 10a + a^{2} = 13$ $2a^{2} - 10a + 12 = 0$	
	$2a^2 - 10a + 12 = 0$ $a^2 - 5a + 6 = 0$	
	$a^{-} - 3a^{+} = 0$ (a - 2)(a - 3) = 0	
	a = 2 or 3	
	\therefore $b = 3 \text{ or } 2$	

15c		3 Marks: Correct
150	$\left(2-rac{1}{n} ight)^n>n\;,\;\;n\geq2$	answer
	$S(2): LHS = \left(2 - \frac{1}{2}\right)^2 = \frac{9}{4} \ge 2$ $RHS = 2$	2 Marks: Proves <i>S</i> (2), correctly states <i>S</i> (k) and <i>S</i> (k+1), and forms a correct expression equivalent to LHS-RHS
	S(2) is true	1 Mark: Proves S(2)
	S(k):	and correctly states $S(k)$ and $S(k+1)$
	$\left(2-rac{1}{k} ight)^{\kappa}>k\;,\;k\in\mathbb{Z}^{+}\;,k\geq2$	
	$S(k+1): RTP\left(2-\frac{1}{k+1}\right)^{k+1} > k+1$	10 students answered correctly
	LHS - RHS = $\left(2 - \frac{1}{k+1}\right)^{k+1} - (k+1)$	
	$> \left(2 - \frac{1}{k}\right)^{k+1} - (k+1) \text{, since } k > 0$ = $\left(2 - \frac{1}{k}\right)^{k} \left(2 - \frac{1}{k}\right) - (k+1)$	
	$= \left(2 - \frac{1}{k}\right)^{k} \left(2 - \frac{1}{k}\right) - (k+1)$	
	> $k\left(2-\frac{1}{k}\right) - (k+1)$ by $S(k)$ > $2k-1-k-1$	
	= k - 2 $\geq 0 \text{ since } k \geq 2$	
	$\therefore \qquad LHS - RHS > 0 \implies LHS > RHS$	
	$\therefore \qquad \qquad \left(2 - \frac{1}{n}\right)^n > n , \ n \ge 2 \text{ by induction}$	
16ai	Since $OCBA$ is a rectangle,	1 Mark: Correct
	$\overrightarrow{OA}.\overrightarrow{OC} = 0$ 6 - 12 + 3a = 0	answer.
	a = 2	Mostly done well
16aii	Since \overrightarrow{OA} is perpendicular to \overrightarrow{OG} , their dot product is equal to zero.	3 Marks: Correct answer.
	$\overrightarrow{OA}. \overrightarrow{OG} = 0$ -6 - 12y + 3z = 0	2 Marks: Uses the dot
	And since \overrightarrow{OG} is perpendicular to \overrightarrow{OC} , their dot product is also equal to zero.	product to set up two equations and attempts to solve simultaneously
	$\overrightarrow{OG}.\overrightarrow{OC} = 0$	to solve simulatiously
	-4 + y + 2z = 0	1 Mark: Finds one
	Solving simultaneously gives	correct equation from dot product.
	y = 0, z = 2	Mostly done well
	1	<u>I</u>

16aiii	$\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{OG} = \begin{pmatrix} 3\\ -11\\ 7 \end{pmatrix}$	2 Marks: Correct answer.
	Hence, point E is 7 units above the $x - y$ plane.	
		1 Mark: Finds OE
		Mostly done well
		17 students got full marks for Q16a.
16b	$\frac{x^2 - 7x + 4}{(x+1)(x-1)^2} \equiv \frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$	4 Marks: Correct answer.
	$x^{2} - 7x + 4 \equiv A(x - 1)^{2} + B(x + 1)(x - 1) + C(x + 1)$ $x = 1 \Rightarrow -2 = 2C \Rightarrow C = -1$ $x = -1 \Rightarrow 12 = 4A \Rightarrow A = 3$ $x = 0 \Rightarrow 4 = 3 + B(1)(-1) + (-1)$ $4 = 2 - B \Rightarrow B = -2$ $I = \int \left[\frac{3}{x + 1} - \frac{2}{x - 1} - \frac{1}{(x - 1)^{2}}\right] dx$ $I = 3\ln x + 1 - 2\ln x - 1 + (x - 1)^{-1} + K$	 3 Marks: Finds correct values for <i>A</i>, <i>B</i> and <i>C</i> and states correct partial fraction decomposition of integrand. OR Finds an expression for <i>I</i> consistent with incorrect values for <i>A</i>, <i>B</i> and <i>C</i>. 2 Marks: Finds correct values for <i>A</i>, <i>B</i>, <i>C</i> 1 Mark: Forms a correct partial fraction decomposition and attempts to find values for <i>A</i>, <i>B</i>, <i>C</i>.
	Alternative (but more difficult) method:	15 students answered correctly.
		Most students didn't choose the easiest partial fraction decomposition.

	$\frac{x^2 - 7x + 4}{(x+1)(x-1)^2} \equiv \frac{A}{x+1} + \frac{Bx+C}{(x-1)^2}$	
	$x^{2} - 7x + 4 \equiv A(x - 1)^{2} + (Bx + C)(x + 1)$	
	$x = -1 \Rightarrow 4A = 12 \Rightarrow A = 3$	
	$x^{2} - 7x + 4 \equiv 3(x - 1)^{2} + (Bx + C)(x + 1)$	
	$x = 0 \Rightarrow 4 = 3 + C \Rightarrow C = 1$	
	$x^{2} - 7x + 4 \equiv 3(x - 1)^{2} + (Bx + 1)(x + 1)$	
	$x = 1 \implies -2 = (B + 1)(2) \implies B = -2$	
	$\therefore \qquad x^2 - 7x + 4 \equiv \frac{3}{x+1} + \frac{-2x+1}{(x-1)^2}$	
	:. $I = \int \frac{3}{x+1} dx + \int \frac{-2x+1}{(x-1)^2} dx$	
	$= 3\ln x+1 + \int \frac{-2x+2}{(x-1)^2} dx - \int \frac{1}{(x-1)^2} dx$	
	$= 3\ln x+1 - 2\int \frac{x-1}{(x-1)^2} dx - \int (x-1)^{-2} dx$	
	$= 3\ln x+1 - 2\int \frac{1}{x-1}dx + (x-1)^{-1}$	
	$= 3\ln x+1 - 2\ln x-1 + \frac{1}{x-1} + C$ $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$	
16ci	$ \mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k} $	2 Marks: Correct answer.
	$\widetilde{\mathbf{a}} \cdot \mathbf{b} = \widetilde{a}_1 \ b_1 + \widetilde{a}_2 \ b_2 + a_3 \ b_3$	1 Mark: Obtains dot
	$\mathbf{\underline{a}} \cdot \mathbf{\underline{b}} = \mathbf{\underline{a}} \mathbf{\underline{b}} \cos \theta$	product and attempts to use $ \cos \theta \le 1$.
	Since $- \mathbf{a} \mathbf{b} \le \mathbf{a} \cdot \mathbf{b} \le \mathbf{a} \mathbf{b} $	
	$- \mathbf{a} \mathbf{b} \leq \mathbf{a} \cdot \mathbf{b} \leq \mathbf{a} \mathbf{b} $ $\therefore \mathbf{a} \cdot \mathbf{b} \leq \mathbf{a} \mathbf{b} $	This part was done
	$(\mathbf{a} \cdot \mathbf{b})^2 \le \mathbf{a} ^2 \mathbf{b} ^2$	reasonably well.
	$\therefore (a_1 b_1 + a_2 b_2 + a_3 b_3)^2 \le (a_1 + a_2 + a_3)^2 (b_1 + b_2 + b_3)^2$	

16cii
Let
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} x \\ 2y \\ z \end{pmatrix}$$
 and $\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0.5 \\ 1 \end{pmatrix}$
From (i),
 $\left(x^2 + (2y)^2 + z^2\right) \left(1^2 + \left(\frac{1}{2}\right)^2 + 1^2\right) \ge \left(x \times 1 + 2y \times \frac{1}{2} + z \times 1\right)$
 $\left(x^2 + 4y^2 + z^2\right) \left(\frac{9}{4}\right) \ge (x + y + z)^2$
 $\left(x^2 + 4y^2 + z^2\right) \left(\frac{9}{4}\right) \ge 3^2$
 $\left(x^2 + 4y^2 + z^2\right) \ge \frac{4}{9} \times 9$
 $\left(x^2 + 4y^2 + z^2\right) \ge 4$
 \therefore min value is 4
 \therefore min value is 4
 x min